
 
 

  

Abstract—Data mining is most commonly used in attempts to 
induce association rules from transaction data. Transactions in 
real-world applications, however, usually consist of quantitative 
values. Designing a sophisticated data-mining algorithm able to 
deal with various types of data presents a challenge to workers 
in this research field. In this paper, a cluster-based fuzzy-genetic 
mining algorithm is proposed for extracting both fuzzy 
association rules and membership functions from quantitative 
transactions. The proposed algorithm can dynamically adjust 
membership functions by genetic algorithms and uses them to 
fuzzify quantitative transactions. It can also speed up the 
evaluation process and keep good quality of solutions by 
clustering chromosomes. Experimental results show the 
effectiveness of the proposed approach. 

I. INTRODUCTION 
ata mining is most commonly used in attempts to induce 
association rules from transaction data. An association 

rule is an expression X→Y, where X is a set of items and Y is 
a single item. It means in the set of transactions, if all the 
items in X exist in a transaction, then Y is also in the 
transaction with a high probability. Most previous studies 
focused on binary valued transaction data. Transaction data in 
real-world applications, however, usually consist of 
quantitative values. Designing a sophisticated data-mining 
algorithm able to deal with various types of data presents a 
challenge to workers in this research field. 

Recently, fuzzy set theory has been used more and more 
frequently in intelligent systems because of its simplicity and 
similarity to human reasoning [14]. The theory has been 
applied in fields such as manufacturing, engineering, 
diagnosis, economics, among others [4, 14, 17, 25]. Several 
fuzzy learning algorithms for inducing rules from given sets 
of data have been designed and used to good effect with 
specific domains [6, 7, 8, 12, 13]. 

As to fuzzy data mining, Hong et al. proposed several 
algorithms to mine fuzzy rules from quantitative data [10, 
11]. They transformed each quantitative item into a fuzzy set 
and used fuzzy operations to find fuzzy rules. Cai et al. 
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proposed weighted mining to reflect different importance to 
different items [2]. Each item was attached a numerical 
weight given by users. Weighted supports and weighted 
confidences were then defined to determine interesting 
association rules. Yue et al. then extended their concepts to 
fuzzy item vectors [26]. Besides, Lee et al. proposed a mining 
algorithm which used multiple minimum supports of different 
items to mine fuzzy association rules [16]. In the above 
approaches, the membership functions were assumed to be 
known in advance. Although many approaches for learning 
membership functions were proposed [3, 19, 20, 22, 23], most 
of them were usually used for classification or control 
problems. Wang et al. tuned membership functions for 
intrusion detection systems based on similarity of association 
rules [24]. Kaya et al. proposed a GA-based clustering 
method to derive a predefined number of membership 
functions for getting a maximum profit within an interval of 
user specified minimum support values [15]. Hong et al. also 
proposed a GA-based fuzzy data-mining algorithm for 
extracting both association rules and membership functions 
from quantitative transactions [9]. That algorithm could 
dynamically adapt membership functions by genetic 
algorithms and used them to fuzzify quantitative transactions. 
Its fitness function was evaluated by the number of large 
1-itemsets and the suitability of membership functions. The 
calculation for large 1-itemsets, however, took a lot of cost, 
especially when the database to be scanned could not totally 
fed into main memory. 

In this paper, an enhanced approach, called cluster-based 
fuzzy-GA mining algorithm, is proposed to speed up the 
evaluation process and keep nearly the same quality of 
solutions. Each chromosome represents a set of membership 
functions used in fuzzy mining. The proposed algorithm first 
divides the chromosomes in a population into k clusters by 
using the k-means clustering approach. All the chromosomes 
in a cluster then use the number of large 1-itemsets derived 
from the representative chromosome in the cluster and their 
own suitability of membership functions to calculate the 
fitness values. The evaluation cost can thus be greatly 
reduced due to the time-saving in finding 1-itemsets. 
Experimental results also show the effectiveness of the 
proposed algorithm. 

II. A CLUSTER-BASED FUZZY-GA MINING FRAMEWORK 
In this paper, the fuzzy, GA and clustering concepts are 

used to discover both useful fuzzy association rules and 
suitable membership functions from quantitative transactions. 
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A cluster-based fuzzy-GA mining framework is first 
proposed for searching membership functions suitable for 
mining problems and for using the final best set of 
membership functions to mine fuzzy association rules. The 
proposed framework is shown in Fig. 1. 
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Fig. 1. The proposed cluster-based fuzzy-GA mining framework 

The proposed framework maintains a population of sets of 
membership functions, and uses the genetic algorithm to 
automatically derive the resulting one. It first transforms each 
set of membership functions into a fixed-length string. It then 
uses the k-means clustering approach to gather similar 
chromosomes into groups. All the chromosomes in a cluster 
use the number of large 1-itemsets derived from the 
representative chromosome in the cluster and their own 
suitability of membership functions to calculate their fitness 
values. Since the number for scanning a database decreases, 
the evaluation cost can thus be reduced. The evaluation 
results are utilized to choose appropriate chromosomes for 
mating in the next generation. The offspring membership 
function sets then undergo recursive "evolution" until a good 
set of membership functions has been obtained. Finally, the 
derived membership functions are used to mine fuzzy 
association rules. 

III. CHROMOSOME REPRESENTATION 
It is important to encode membership functions as string 

representation for GAs to be applied. Several possible 
encoding approaches have been described in [3, 18, 22, 23]. 
In this paper, each set of membership functions is encoded as 
shown in Fig. 2. It is the same representation as that in our 
previous paper [9] for a fair comparison later. 

In Fig. 2, each membership function is assumed to be 
isosceles-triangle and represented by a pair (c, w), with c 
indicating the center abscissa and w representing half the 
spread. Rjk denotes the membership function of the k-th 
linguistic term of item Ij. All pairs of (c, w)'s for a certain item 
are concatenated to represent its membership functions. Since 
c and w are both numeric values, a chromosome is thus 

encoded as a fixed-length real-number string rather than a bit 
string. 
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Fig. 2. Membership Functions of item Ij 

Note that other types of membership functions (e.g. 
non-isosceles trapezes) can also be adopted in our method. 
For coding non-isosceles triangles and trapezes, three and 
four points are needed instead of two for isosceles triangles. 

IV. MINING MEMBERSHIP FUNCTIONS AND ASSOCIATION 
RULES 

A. Initial Population 
A genetic algorithm requires a population of feasible 

solutions to be initialized and updated during the evolution 
process. As mentioned above, each individual within the 
population is a set of isosceles-triangular membership 
functions. Each membership function corresponds to a 
linguistic term in a certain item. The initial set of 
chromosomes is randomly generated with some constraints 
for forming feasible membership functions. 

B. Fitness and Selection 
In order to develop a good set of membership functions 

from an initial population, the genetic algorithm selects 
parent membership function sets with its probability values 
for mating. An evaluation function is then used to qualify the 
derived membership function sets. Our previous fitness 
function defined in [9] is used for a fair comparison. It is 
shown as follows: 
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where |L1q| is the number of large 1-itemsets obtained by 
using the set of membership functions in chromosome Cq and 
suitability(Cq) represents the shape suitability of Cq. 
Suitability(Cq) is defined as: 
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where m is the number of items. Overlap_factor(Cqj) 
represents the overlap factor of the membership functions for 
an item Ij in the chromosome Cq and is defined as: 
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where overlap(Rjk, Rji) is the overlap length of Rjk and Rji. 
Coverage_factor(Cqj) represents the coverage ratio of a set of 
membership functions for an item Ij and is defined as: 
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where range(Rj1, Rj2, …, Rjl) is the coverage range of the 
membership functions, l is the number of membership 
functions for Ij, and max(Ij) is the maximum quantity of Ij in 
the transactions. 

The suitability factor used in the fitness function can 
reduce the occurrence of the two bad kinds of membership 
functions shown in Fig. 3, where the first one is too 
redundant, and the second one is too separate. 
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Fig. 3. Two bad membership functions 

C. Clustering Chromosomes 
Although the evaluation by 1-itemsets is much faster than 

that by all itemsets or interesting association rules, it is still 
time-consuming since the database must be scanned once for 
each chromosome. In this paper, we thus propose a new 
method based on clustering technique to reduce the 
evaluation time of large 1-itemsets. The process proceeds as 
follows. The coverage factors and overlap factors of all the 
chromosomes are used to form appropriate clusters. The 
k-means clustering approach is adopted here to cluster 
chromosomes. Since the chromosomes with similar coverage 
factors and overlap factors will form a cluster, they will have 
nearly the same shape of membership functions and induce 
about the same number of large 1-itemsets. For each cluster, 
the chromosome which is the nearest to the cluster center is 
thus chosen to derive its number of large 1-itemsets. All 
chromosomes in the same cluster then use the number of large 
1-itemsets derived from the representative chromosome as 
their own. Finally, each chromosome is evaluated by this 
number of large 1-itemsets divided by its own suitability 
value. The details of the process will be further illustrated 
later. 

D. Genetic Operators 
Genetic operators are very important to the success of 

specific GA applications. Two genetic operators, the 
max-min-arithmetical (MMA) crossover proposed in [5] and 
the one-point mutation, are used in the genetic-fuzzy mining 
framework. Assume there are two parent chromosomes: 
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where the parameter d is either a constant or a variable whose 
value depends on the age of the population. The best two 
chromosomes of the four candidates are then chosen as the 
offspring. 

The one-point mutation operator will create a new fuzzy 
membership function by adding a random value ε (between 
-wjk to + wjk ) to the center or to the spread of an existing 
linguistic term, say Rjk. Assume that c and w represent the 
center and the spread of Rjk. The center or the spread of the 
newly derived membership function will be changed to c + ε 
or w + ε by the mutation operation. Mutation at the center of a 
fuzzy membership function may however disrupt the order of 
the resulting fuzzy membership functions. These fuzzy 
membership functions then need rearrangement according to 
their center values. 

V. THE PROPOSED MINING ALGORITHM 
According to the above description, the proposed 

cluster-based fuzzy-genetic algorithm for mining both fuzzy 
association rules and membership functions is described 
below. 

 
The cluster-based fuzzy-genetic mining algorithm: 
INPUT: A body of n quantitative transactions, a set of m 

items, each with a number of linguistic terms, a 
parameter k for k-means clustering, a population size 
P, a crossover rate Pc, a mutation rate Pm, a support 
threshold α, and a confidence threshold λ. 

OUTPUT: A set of fuzzy association rules with its associated 
set of membership functions. 

STEP 1: Randomly generate a population of P individuals; 
each individual is a set of membership functions for 
all the m items. 

STEP 2: Encode each set of membership functions into a 
string representation according to the schema stated 
in Section III. 

STEP 3: Calculate the coverage_factor and the overlap_factor 
of each chromosome using the formulas defined in 
Section IV-B. 

STEP 4: Divide the chromosomes into k clusters by the 
k-means clustering approach based on the two 
attributes (coverage_factors and overlap_factors); 
Find out the representative chromosome in each 
cluster, which is the nearest to the center. 

STEP 5: Calculate the number of large 1-itemsets for each 
representative chromosome by the following 
substeps. 

STEP 5.1: For each transaction datum Di, i = 1 to n, and for 
each item Ij, j = 1 to m, transfer the quantitative 
value vj

(i) into a fuzzy set fj
(i) represented as: 
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using the corresponding membership functions 
represented by the representative chromosome, 
where vj

(i) is the quantitative value of Ij in Di, Rjk 
is the k-th fuzzy region (term) of item Ij, fjl

(i) is 
vj

(i)’s fuzzy membership value in region Rjk, and l 
(= |Ij|) is the number of linguistic terms for Ij. 

STEP 5.2: For each item region Rjk, calculate its count from 
the transactions as follows: 

∑
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=
n

i

i
jkjk fcount

1

)( . 

STEP 5.3: For each Rjk , 1 ≤ j ≤ m and 1≤ k ≤ |Ij|, check 
whether its countjk is larger than or equal to the 
minimum support threshold α. If Rjk satisfies the 
above condition, put it in the set of large 
1-itemsets (L1). That is: 
L1={Rjk | countjk ≥ α, 1 ≤ j ≤ m and 1 ≤ k ≤ | Ij | }. 

STEP 5.4: Set |L1| as the number of large 1-itemsets for the 
representative chromosome. 

STEP 6: Calculate the fitness value of each chromosome 
using the number of large 1-itemsets of its 
representative chromosome and the suitability value 
of its own according to the formula defined in 
Section IV-B. 

STEP 7: Execute the crossover operation on the population. 
STEP 8: Execute the mutation operation on the population. 
STEP 9: Use the Roulette-wheel selection operation to 

choose appropriate individuals for the next 
generation. 

STEP 10: If the termination criterion is not satisfied, go to 
Step 3; otherwise, do the next step. 

STEP 11: Get the set of membership functions with the 
highest fitness value. 

STEP 12: Mine fuzzy rules using the set of membership 
functions. 

The set of membership functions are then used to mine 
fuzzy association rules from the given database. Our fuzzy 
mining algorithm proposed in [11] is then adopted to achieve 
this purpose. 

VI. EXPERIMENTAL RESULTS 
In this section, experiments made to show the performance 

of the proposed approach are described. They were 
implemented in Java on a personal computer with Intel 
Pentium IV 3.20GHz and 512MB RAM. 64 items and 10000 
transactions were used in the experiments. In each data set, 
the numbers of purchased items in transactions were first 
randomly generated. The purchased items and their quantities 
in each transaction were then generated. An item could not be 
generated twice in a transaction. The initial population size P 
is set at 50, the number of cluster k is set at 3, the crossover 
rate pc is set at 0.8, and the mutation rate pm is set at 0.001. The 
parameter d of the crossover operator is set at 0.35 according 

to Herrera et al.’s paper [5] and the minimum support α is set 
at 0.05 (5%). 

After 500 generations, the final membership functions are 
apparently much better than the original ones. For example, 
the initial membership functions of some four items among 
the 64 items are shown in Fig. 4. 
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Fig. 4. The initial membership functions of some four items 

In Fig. 4, the membership functions have the two bad types 
of shapes according to the definition in the previous section. 
The membership functions for Item1, Item2 and Item4 overlap 
too much. After 500 generations, the final membership 
functions for the same four items are shown in Fig. 5. 

It is easily seen that the membership functions in Fig. 6 is 
better than those in Fig. 4. The two bad kinds of membership 
functions didn’t appear in the final results. 

1.07 2.91 5.850
1.03 1.81 1.70 1.23 2.98 5.690

1.12 1.61 2.07

3.98 6.870
1.82 2.24

1.28 3.21 5.52
0

1.12 1.61 1.43

Item1 Item2

Item3 Item4

1.921.51

1.07 2.91 5.850
1.03 1.81 1.70 1.23 2.98 5.690

1.12 1.61 2.07

3.98 6.870
1.82 2.24

1.28 3.21 5.52
0

1.12 1.61 1.43

Item1 Item2

Item3 Item4

1.921.51
 

Fig. 5. The final membership functions of some four items after 500 
generations 

The average fitness values of the chromosomes along with 
different numbers of generations are shown in Fig. 6. As 
expected, the curve gradually goes upward, finally 
converging to a certain value. 
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Fig. 6. The average fitness values along with different numbers of 
generations 
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Next, experiments were made by using only suitability and 
only |L1| as the fitness functions to show the validity of the 
proposed one. For the same experimental environments and 
data, the membership functions of the above four items after 
500 generations by using only suitability as the fitness 
function are shown in Fig. 7, and by using only the number of 
large 1-itemsets are shown in Fig. 8. 
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Fig. 7. The final membership functions when only the suitability is 

considered 
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Fig. 8. The final membership functions when only |L1| is considered 

It can be easily seen from Fig. 7 that the derived 
membership functions by considering only suitability are 
satisfactory because the suitability measure is designed for 
getting good shapes of membership functions. Its number of 
large 1-itemsets is, however, less than the original one. On the 
contrary, it is very natural for the derived membership 
functions by considering only the number of large 1-itemsets 
to have a bad shape from Fig. 8. Their overlapping degrees 
are quite high. Next, experiments were made to compare the 
proposed method with our previous one [9] for showing the 
effect of using clusters in evaluation. The average fitness 
values of the chromosomes along with different numbers of 
generations are shown in Fig. 9. 
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Fig. 9. The comparison results between the proposed and previous approach  

From Fig. 9., it can be easily observed that the average 
fitness values of the proposed approach was only a little less 
than the previous one, but very close. The results are 
reasonable since the proposed approach used the clustering 
technique to estimate the number of large 1-itemsets for the 
chromosomes in the same cluster. The comparison for the 
execution time of the two approaches is shown in Table I. 

TABLE I 
COMPARISON FOR THE EXECUTION TIME OF THE TWO APPROACHES 

 Population 
 Size 

Cluster 
Number 

Execution Time 
(Minutes) 

Speed-up 
Ratio 

The 
proposed 
approach 

50 3 42.95 3.83 

The 
previous 
approach 

50 null 164.71 1 

From Table I, it can be seen that the proposed approach ran 
nearly four times faster than the previous one. It can be 
concluded that the proposed approach can not only get nearly 
the same fitness values as the previous approach but also 
greatly reduce the execution time. The proposed approach can 
thus get a good trade-off between accuracy and execution 
time. 

At last, experiments were made for providing a 
comparative analysis of the proposed approach with the fuzzy 
mining approach in [11] with uniform fuzzy partition. The 
relationship between the numbers of large 1-itemsets and the 
minimum supports for the proposed approach and the one 
with uniform fuzzy partition is shown in Fig. 10. 
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Fig. 10. The relationship between the numbers of large 1-itemsets and the 
minimum supports for the two approaches  

It can be observed from Fig. 10. that the number of large 
1-itemsets derived by the proposed algorithm was larger than 
the one with uniform fuzzy partition. It is consistent with the 
previous discussion since the adopted fitness function will 
help the proposed approach search for a bigger number of 
large 1-itemsets. 

VII. CONCLUSION AND FUTURE WORKS 
In this paper, we have proposed a cluster-based 

fuzzy-genetic mining algorithm for extracting both fuzzy 
association rules and membership functions from quantitative 
transactions. The proposed algorithm can dynamically adjust 
membership functions by genetic algorithms and uses them to 
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fuzzify quantitative transactions. It can also speed up the 
evaluation process and keep nearly the same quality of 
solutions by clustering chromosomes. Each chromosome 
represents a set of membership functions used in fuzzy 
mining. The proposed algorithm first divides the 
chromosomes in a population into k clusters by using the 
k-means clustering approach. All the chromosomes in a 
cluster then use the number of large 1-itemsets derived from 
the representative chromosome in the cluster and their own 
suitability of membership functions to calculate the fitness 
values. The evaluation cost can thus be greatly reduced due to 
the time-saving in finding 1-itemsets. Experimental results 
first show that the adopted fitness function can achieve a good 
trade-off between numbers of large itemsets and suitability of 
membership functions. They then show that using the 
clustering technique to speed up the evaluation process can 
not only get nearly the same fitness values as the previous 
approach but also greatly reduce the execution time. The 
proposed approach can thus get a good trade-off between 
accuracy and execution time. In the future, we will 
continuously attempt to enhance the GA-based mining 
framework for more complex problems. 
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